
 01/2022

MBusRacXV2
For Android

Manual

2 MBusRacXV2 Android

© Michael Rac GmbH / Ansbach / Germany / 2016...2022

The name MBusRacXV2 and this manual are protected by copyright laws. Copying, translating, transferring to other media like
microfiches and other electromagnetic or optical storage media without the written permission of the Michael Rac GmbH is
prohibited.
Trademarks or registered trademarks may be used throughout this manual. Even if it is not shown explicitly, they are protected
by copyright laws and belong to their respective owners.
The MBusRacXV2 Android function library and the accompanying documentation were developed with great precision and
tested extensively for being free of errors. However, it might be possible that undetected errors appear. The Michael Rac GmbH
is not liable for any incidental, indirect or consequential damages whatsoever regarding the MBusRacXV2 Android function
library and this manual, the use of these products or the inability to use these products (including but not limited to, damages for
loss of business profits, business interruption, loss of business information or any other pecuniary losses). The Michael Rac
GmbH’s entire liability is limited to the price paid for this product.

Michael Rac GmbH
Am Hirtenfeld 51
91522 Ansbach
GERMANY

Email: mrg@michaelrac.com

 MBusRacXV2 Android 3

Table of Contents

MBusRacXV2 for Android 7

Introduction 7
Items Supplied 7
Acronyms and Abbreviations 8
Available Classes 8
MBWBLUE class: methods 10

MBWBLUE(String DTypeName) 10
void Destroy() 10
void AvailableDevicesList() 10
int AvailableDevicesCount() 10
String AvailableDevicesName(int Indx) 10
String AvailableDevicesAddress(int Indx) 11
String AvailableDevicesGetAddressFromName(String BTName) 11
boolean BTConnect (String MACAdr) 11
void BTDisConnect () 11
boolean BTIsConnected() 11
boolean BTCMDRequestFirmwareVersionLeg() 12
boolean BTCMDReadROMLeg() 12
boolean BTCMDReceiverModeLeg() 12
boolean BTCMDClearRadioFrameBuffer() 13
boolean BTCMDReadRadioLeg() 13
boolean BTCMDReadRadio() 13
boolean BTCMDSwitchOff() 13
boolean BTCMDMBWBLUEFirmwareUpdate() 14

MBWBLUE class: properties 15
boolean BTAdapterOK 15
String BTUpdateFWVersion 15
byte BTOutBuffer[] 15
int BTOutBufferLen 15
byte BTInBuffer[] 15
int BTInBufferLen 15
int BTGen3 15
int BTFreq 15
int BTCurReceiveMode 16
int BTCurReceiverFreq 16
int BTTelgRSSI 16
int BTStatisticsGoodFrameTS 16
int BTStatisticsGoodFrameCA 16
int BTStatisticsGoodFrameCB 17
int BTStatisticsError36 17
int BTStatisticsErrorCRC 17
String BTFWVersion 17
String BTDevType 17
String BTSerialNumber 18
int BTProgress 18

MBus class: methods 19
MBus (Context MAContext, byte KFKey[]) 19
boolean Interpret(byte BIn[], int BInStart, int BInLen, boolean DoNotDecipher) 19

MBus class: crypto methods 20

4 MBusRacXV2 Android

void CryptoKeysWrite() 23
int CryptoKeysGetKeyCount(int KeyType) 23
String CryptoKeysGetKey(int KeyType, int KeyIndx) 23
boolean CryptoKeysDelete(int KeyType, int KeyIndx) 23
boolean CryptoKeysAddOrModify(int KeyType, int KeyIndx, String KeyStr, String
Key2Str) 24

MBus class: properties 25
String LibVersion 25
boolean IsValid 25
int RecSecond 25
int RecMinute 25
int RecHour 25
int RecDay 25
int RecMonth 25
int RecYear 25
int LField 25
int CField 25
String ManFieldLL 26
String ManFieldTPL 26
String AdrFieldLL 26
String AdrFieldTPL 26
int VerFieldLL 26
int VerFieldTPL 26
int DevFieldLL 26
int DevFieldTPL 26
int ELLType 26
int ELLCC 27
int ELLCC_RepAccess 27
int ELLCC_Accessib 27
int ELLCC_Priority 27
int ELLCC_HopCtr 27
int ELLCC_Synchr 27
int ELLCC_Delay 27
int ELLCC_BiDi 28
int ELLACC 28
int ELLSN 28
int ELLSN_Enc 28
int ELLSN_Time 28
int ELLSN_Session 28
int ELLSN_CRC 28
String ELLMan 29
String ELLAdr 29
int ELLVer 29
int ELLDev 29
int AFLCI 29
int AFLLen 29
int AFLFCL 29
int AFLFCL_FID 29
int AFLFCL_KIP 30
int AFLFCL_MACP 30
int AFLFCL_MCRP 30

 MBusRacXV2 Android 5

int AFLFCL_MLP 30
int AFLFCL_MCLP 30
int AFLFCL_MF 30
int AFLMCL 30
int AFLMCL_AT 31
int AFLMCL_KIMP 31
int AFLMCL_MCMP 31
int AFLMCL_MLMP 31
int AFLKI 31
int AFLKI_KID 31
int AFLKI_KDFS 31
int AFLKI_KVer 32
int AFLMCR 32
byte AFLMAC[] 32
int AFLMACLen 32
int AFLML 32
int TPLCI 32
int TPLAcc 32
int TPLStatus 32
int TPLConfig 33
int TPLConfig_Mode 33
int TPLConfig_EncBytes 33
int TPLConfig_HopCtr 33
int TPLConfig_RepAccess 33
int TPLConfig_ContentMessage 33
int TPLConfig_ContentIndex 33
int TPLConfig_Synchr 33
int TPLConfig_Accessib 34
int TPLConfig_BiDi 34
int TPLConfig_CtrSize 34
int TPLConfigExt 34
int TPLConfigExt_KID 34
int TPLConfigExt_KDFS 34
int TPLConfigExt_Ver 34
int TPLConfigExt_PType 34
int DRCount 35
String DRDIB[] 35
int DRDIF_Dat[] 35
int DRDIF_Func[] 35
int DRDIF_Unit[] 35
int DRDIF_Tariff[] 35
int DRDIF_Storage[] 35
String DRVIB[] 36
String DRVIFTxt[] 36
int DRVIF[] 36
String DRValueStr[] 36
boolean CIPDeciphOK 37
byte Frame[] 37
byte FrameDeCiphered[] 37

Code Example 38
MBWBLUE_DEMO application 41

6 MBusRacXV2 Android

Installing and Starting 41
Usage 42

 MBusRacXV2 Android 7

MBusRacXV2 for Android

Introduction

MBusRacXV2 for Android is a function library for reading and interpreting wireless
M-Bus radio frames according to EN13757-3, EN13757-4 and OMS, respectively.

It is written using Android Studio and is distributed in the form of an Android Archive
file (mbusracxv2.aar). For integration of AAR files in your Android project please
check the respective internet pages.

The library is compiled for Android versions 4.03 (API15) and higher for phones and
tablets.

To demonstrate the use of the library a small demo application
(MBWBLUE_DEMO.apk) with source code is available.

The library is mainly developed for reading MBWBLUE wireless M-Bus receiver
devices but it is also possible to only use the M-Bus radio frame interpretation part of
it with other receivers. For more information about the MBWBLUE:
http://www.michaelrac.com/download/MBWBLUE_DeviceManual.pdf

The mbusracxv2.aar library can be royalty free integrated in your projects and
distributed with your projects, as long as the mbusracxv2.aar file is not modified,
decompiled or reverse engineered.

It is in general assumed that the user is familiar with wireless M-Bus radio frames
and the definitions used therein. More information about wireless M-Bus can be
found in EN13757-x, on the OMS web page (http://oms-group.org) and other sources
of the internet.

Items Supplied

The MBusRacXV2 package contains the following files:

- MBusRacXV2_Manual.pdf This documentation

- mbusracxv2.aar The Android Archive to integrate in
your projects

- MBWBLUE_DEMO.apk The ready compiled demo application

- MBWBLUE_DEMO.ZIP The demo application Android Studio

project including the source code

http://www.michaelrac.com/download/MBWBLUE_DeviceManual.pdf
http://oms-group.org/

8 MBusRacXV2 Android

Acronyms and Abbreviations

Abbreviation Explanation
AAR Android Archive file extension
ACC Access Number
AES Advanced Encryption Standard
AES CBC AEC Cipher Block Chaining
AES CTR AES Counter Mode
AFL Authentication and Fragmentation Layer
APK Android Package file extension
C Field Control Field
CI Field Control Information Field
CRC Cyclic Redundancy Check
DIB Data Information Block
DIF Data Information Field
DIFE Data Information Field Extension
IV Initialization Vector
ELL Extended Link Layer
LL Link Layer
M-Bus Meter-Bus (wired or wireless)
MAC Message Authentication Code
RSSI Received Signal Strength Indication
TPL Transport Layer
USB Universal Serial Bus
VIB Value Information Block
VIF Value Information Field
VIFE Value Information Field Extension

Available Classes

The MBusRacXV2 library contains two main public classes:

- MBWBLUE methods and properties reading MBWBLUE devices

- MBus methods and properties for radio frame interpretation

The MBWBLUE is a wireless M-Bus receiver with Bluetooth interface. The respective
class contains methods and properties for connecting and reading this device. In
general, the user must establish the Bluetooth pairing manually using the Android
operating system. Once the MBWBLUE is paired with the Android device the
MBWBLUE class provides everything necessary to get information about the paired
device, establish a connection and read it out.

The MBus class provides methods and properties for deciphering and interpreting
wireless M-Bus radio frames. It contains also a radio key handling database for
storing radio frame keys on the Android device (in ciphered form).

 MBusRacXV2 Android 9

An example for invoking the two classes is shown below:

package com.michaelrac.mbwblue_demo;

import com.michaelrac.mbusracxv2.MBWBLUE; // import class MBWBLUE
import com.michaelrac.mbusracxv2.MBus; // import class MBus

public class MainActivity extends AppCompatActivity {

 private MBWBLUE MBL; // MBWBLUE class declaration -> MBL
 private MBus MBS; // MBus class declaration -> MBS
 private byte KeyFileKey[]; // KeyFileKey is used to hold the
 // ciphering key for storing the radio key
 // database on the Android device

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 MBL = new MBWBLUE(""); // invoke MBWBLUE class (parameter must be “”)

 KeyFileKey=new byte[16]; // define you own key for storing radio frame keys
 KeyFileKey[0]=(byte)0x36;KeyFileKey[1]=(byte)0x98;KeyFileKey[2]=(byte)0xBF;

KeyFileKey[3]=(byte)0x98;KeyFileKey[4]=(byte)0xAC;KeyFileKey[5]=(byte)0xED;
KeyFileKey[6]=(byte)0x4E;KeyFileKey[7]=(byte)0xC3;KeyFileKey[8]=(byte)0xD9;
KeyFileKey[9]=(byte)0x72;KeyFileKey[10]=(byte)0x21;KeyFileKey[11]=(byte)0xAE;
KeyFileKey[12]=(byte)0x6B;KeyFileKey[13]=(byte)0x80;KeyFileKey[14]=(byte)0xFA;
KeyFileKey[15]=(byte)0x23;

 MBS = new MBus(getApplicationContext(),KeyFileKey);

10 MBusRacXV2 Android

MBWBLUE class: methods

This chapter lists all available MBWBLUE class methods. All methods are blocking
methods; they return only after having finished the respective task. It is advised to
invoke all Bluetooth communication methods (BTConnect, BTCMDxxxxx) only
in AsyncTasks to not block the Android main UI task.

MBWBLUE(String DTypeName)

Constructor of the MBWBLUE class.

DTypeName must be set to ""

void Destroy()

Destructor of the MBWBLUE class. Should be called after having finished using the
MBWBLUE class since some clean-up work is done.

void AvailableDevicesList()

Searches for and creates a list of all paired MBWBLUE devices.

int AvailableDevicesCount()

After having invoked AvailableDevicesList() this method returns the number of paired
MBWBLUE devices.

String AvailableDevicesName(int Indx)

After having invoked AvailableDevicesList() this method returns the device name
(e.g. MBWBLUE 12345678) of the MBWBLUE devices at list index Indx. If Indx is not
valid the method returns "".

Indx: Entry index of the available MBWBLUE device list.

 MBusRacXV2 Android 11

String AvailableDevicesAddress(int Indx)

After having invoked AvailableDevicesList() this method returns the Bluetooth MAC
address (e.g. 8C:DE:52:B1:DF:FF) of the MBWBLUE devices at list index Indx. If
Indx is not valid the method returns "".

Indx: Entry index of the available MBWBLUE device list.

String AvailableDevicesGetAddressFromName(String BTName)

After having invoked AvailableDevicesList() this method searches the available
MBWBLUE device list to get the MAC address of a device from the given device
name.

BTName: device name (e.g. MBWBLUE 12345678) of the

MBWBLUE device to get the MAC address (e.g.
8C:DE:52:B1:DF:FF) from.

boolean BTConnect (String MACAdr)

Establishes the connection to the MBWBLUE device with the given MACAdr. Return
value is true if successful and false if not successful.

MACAdr: MAC address (e.g. 8C:DE:52:B1:DF:FF) of the

MBWBLUE

void BTDisConnect ()

Shuts down the connection to the MBWBLUE device.

boolean BTIsConnected()

Checks if a Bluetooth connection is established. Return value is true if the connection
is established, false otherwise.

12 MBusRacXV2 Android

boolean BTCMDRequestFirmwareVersionLeg()

Sends the command to request the firmware version of the MBWBLUE device. This
method may only be invoked if a Bluetooth connection is established. If the return
value is true (successful) the following properties are updated:

BTFreq: 434 = MBWBLUE is a 434 MHz device

868 = MBWBLUE is a 868 MHz device

BTGen3: 0 = MBWBLUE is a generation 2 device
 1 = MBWBLUE is a generation 3 device

BTFWVersion Firmware version of the device (e.g. "3.050")

BTDevType MBWBLUE device type, may contain:

"MBT1BLUE 868"
"MBT1BLUE 434"
"MBWBLUE 868 V2"
"MBWBLUE 434 V2"
"MBWBLUE 868 V3"
"MBWBLUE 434 V3"

boolean BTCMDReadROMLeg()

Sends the command to request the serial number of the MBWBLUE device. This
method may only be invoked if a Bluetooth connection is established. If the return
value is true (successful) the following property is updated:

BTSerialNumber Serial number of the MBWBLUE (e.g. "87388927”)

boolean BTCMDReceiverModeLeg()

Sends the command to set the receiver mode of the MBWBLUE device and clears
additionally all buffered radio frames and statistical values, if available. This method
may only be invoked if a Bluetooth connection is established. The return value is true
if the command has been successfully sent.
Before invoking this method the following properties must be set correctly:

BTCurReceiverFreq: 434 set reception mode to 434 MHz
 868 set reception mode to 868 MHz

BTCurReceiveMode 0 set reception to receiving mode T and C frames
 1 set reception to receiving mode S frames

 MBusRacXV2 Android 13

boolean BTCMDClearRadioFrameBuffer()

Sends the command to clear all buffered radio frame and statistical values, if
available. This method may only be invoked if a Bluetooth connection is established.
The return value is true if the command has been successfully sent.

boolean BTCMDReadRadioLeg()

Sends the command to read the next received radio frame from the MBWBLUE. This
method may only be invoked if a Bluetooth connection is established. The return
value is true if the command has been successfully sent.

This method must be invoked if the MBWBLUE is a generation 2 device: BTGen3 = 0

To decipher and interpret the radio frame the MBus class’s Interpret() method must
be invoked in the following way:

MBS.Interpret(MBL.BTInBuffer,12,241,false);

boolean BTCMDReadRadio()

Sends the command to read the next received radio frame from the MBWBLUE. This
method may only be invoked if a Bluetooth connection is established. The return
value is true if the command has been successfully sent.

This method must be invoked if the MBWBLUE is a generation 3 device: BTGen3 = 1

To decipher and interpret the radio frame the MBus class’s Interpret() method must
be invoked in the following way:

MBS.Interpret(MBL.BTInBuffer,5,256,false);

boolean BTCMDSwitchOff()

Sends the command to switch the MBWBLUE off. This method may only be invoked
if a Bluetooth connection is established. The return value is true if the command has
been successfully sent.

14 MBusRacXV2 Android

boolean BTCMDMBWBLUEFirmwareUpdate()

Sends the command to start a firmware update of the MBWBLUE. This method may
only be invoked if a Bluetooth connection is established. The return value is true if
the command has been successfully sent.

This method takes about 120 seconds to complete. By checking the property
BTProgress (0 … 100) it is possible to track the progress.

With the MBWBLUE it is only possible to write a new firmware to the device. Even
though you may invoke this method writing the same or an older firmware version to
the MBWBLUE, the MBWBLUE is ignoring older or same versions of the firmware.
Therefore, it is advised to first check the firmware version contained in this library and
the firmware version of the MBWBLUE device:

BTUpdateFWVersion this property contains the firmware version of the

firmware contained in this library.

BTFWVersion after having invoked the method

BTCMDRequestFirmwareVersionLeg() this property
contains the firmware version of the MBWBLUE
device.

If the firmware version in BTUpdateFWVersion is higher than the firmware version in
BTFWVersion you may start the firmware update.

The firmware update is only available for generation 3 devices: BTGen3 = 1

 MBusRacXV2 Android 15

MBWBLUE class: properties

boolean BTAdapterOK

After construction of the MBWBLUE class this property contains:

false: Bluetooth not available on Android device
true: Bluetooth available and initialised

String BTUpdateFWVersion

Contains the firmware version (e.g. "3.050") of the firmware contained in this library
(for firmware updates).

byte BTOutBuffer[]
int BTOutBufferLen
byte BTInBuffer[]
int BTInBufferLen

Internal buffers and buffer lengths for communicating with the MBWBLUE device. It is
not necessary to use these buffers directly since all communication is done by
methods. However, BTInBuffer is a parameter to be passed to the MBWBLUE class
Interpretation method.

int BTGen3

After having invoked BTCMDRequestFirmwareVersionLeg() this property contains:

BTGen3 0 = MBWBLUE is a generation 2 device
 1 = MBWBLUE is a generation 3 device

int BTFreq

After having invoked BTCMDRequestFirmwareVersionLeg() this property contains:

BTFreq 434 = MBWBLUE is a 434 MHz device

868 = MBWBLUE is a 868 MHz device

16 MBusRacXV2 Android

int BTCurReceiveMode

This property must be set correctly before invoking BTCMDReadRadioLeg() or
BTCMDReadRadio().

BTCurReceiveMode 0 = mode T + C
 1 = mode S

int BTCurReceiverFreq

This property must be set correctly before invoking BTCMDReadRadioLeg() or
BTCMDReadRadio().

BTCurReceiverFreq 434 = 434 MHz receive mode
 868 = 868 MHz receive mode

int BTTelgRSSI

After having invoked BTCMDReadRadioLeg() or BTCMDReadRadio() this property
contains the signal strength (RSSI) of the received radio frame in percent (0…100).

int BTStatisticsGoodFrameTS

After having invoked BTCMDReadRadio() this property contains the number of
correctly received radio frames in either mode T or mode S. This statistical value is
reset to zero after having invoked BTCMDReceiverModeLeg() or
BTCMDClearRadioFrameBuffer().
This property is only valid for generation 3 MBWBLUE devices (BTGen3=1).

int BTStatisticsGoodFrameCA

After having invoked BTCMDReadRadio() this property contains the number of
correctly received radio frames in mode C format A. This statistical value is reset to
zero after having invoked BTCMDReceiverModeLeg() or
BTCMDClearRadioFrameBuffer().
This property is only valid for generation 3 MBWBLUE devices (BTGen3=1).

 MBusRacXV2 Android 17

int BTStatisticsGoodFrameCB

After having invoked BTCMDReadRadio() this property contains the number of
correctly received radio frames in mode C format B. This statistical value is reset to
zero after having invoked BTCMDReceiverModeLeg() or
BTCMDClearRadioFrameBuffer().
This property is only valid for generation 3 MBWBLUE devices (BTGen3=1).

int BTStatisticsError36

After having invoked BTCMDReadRadio() this property contains the number of
received radio frames with 3 of 6 coding error. This statistical value is reset to zero
after having invoked BTCMDReceiverModeLeg() or
BTCMDClearRadioFrameBuffer().
This property is only valid for generation 3 MBWBLUE devices (BTGen3=1).

int BTStatisticsErrorCRC

After having invoked BTCMDReadRadio() this property contains the number of
received radio frames with CRC error. This statistical value is reset to zero after
having invoked BTCMDReceiverModeLeg() or BTCMDClearRadioFrameBuffer().
This property is only valid for generation 3 MBWBLUE devices (BTGen3=1).

String BTFWVersion

After having invoked BTCMDRequestFirmwareVersionLeg() this property contains:

BTFWVersion Firmware version of the device (e.g. "3.050")

String BTDevType

After having invoked BTCMDRequestFirmwareVersionLeg() this property contains:

BTDevType MBWBLUE device type; may contain:

"MBT1BLUE 868"
"MBT1BLUE 434"
"MBWBLUE 868 V2"
"MBWBLUE 434 V2"
"MBWBLUE 868 V3"
"MBWBLUE 434 V3"

18 MBusRacXV2 Android

String BTSerialNumber

After having invoked BTCMDReadROMLeg() this property contains:

BTSerialNumber: Serial number of the MBWBLUE (e.g. "87388927”)

int BTProgress

This property is only used during firmware update and contains the progress of the
firmware update in percent (0% to 100%).

 MBusRacXV2 Android 19

MBus class: methods

This chapter lists all general MBus class methods. There is a separate chapter for
the methods of handling the radio frame deciphering keys.

MBus (Context MAContext, byte KFKey[])

Constructor of the MBus class.

MAContext the context of the MainActivity of the application

(use e.g. getApplicationContext())

KFKey a 16 byte array containing a developer specific ciphering key.
This key is used to cipher the database of stored radio keys (see
next chapter) before it is written to the Android application
storage space. Since the radio key database is stored on the
Android device it can be read by unauthorized persons. Use a
strong secret key to protect the radio key database from
unauthorized access.

boolean Interpret(byte BIn[], int BInStart, int BInLen, boolean DoNotDecipher)

This method interprets the radio frame in BIn[] starting from byte index BInStart.
BInLen gives the total number of bytes in BIn[]. If you do not want to decipher the
radio frame the parameter DoNotDecipher must be set to true; usually it should
always contain false.

BIn[] byte array containing the received radio frame

BInStart byte index in BIn[] at which the received radio frame starts
 (index of length byte of the radio frame)

BInLen total number of bytes in BIn[]

DoNotDecipher false try to decipher radio frame
 true do not try to decipher radio frame

If the return value is true all properties of the MBus class are updated and are
containing all information about the radio frame. If the return value is false the
properties of the MBus class are invalid.
This is equivalent to checking the property IsValid (IsValid = true, radio frame
properties are valid, IsValid = false, radio frame properties are not valid).

20 MBusRacXV2 Android

MBus class: crypto methods

The MBus class does not only contain the deciphering and interpretation of radio
frames but is also capable of managing a set of radio frame deciphering keys.
Depending on how ciphering is used there are four different types of radio keys.
Radio keys are stored in a database within the library.

It is possible to write this database to the application specific Android storage space
on the Android device. This is done by ciphering it using the KFKey[] parameter of
the MBus class. However, if you do not want the MBusRacXV2 library to manage the
radio key storage you may also always set all radio keys at the start of the library and
do not save the keys to the Android device.

Since there are different strategies on how to cipher radio frames there are four radio
key types.

KeyType 3 AES 128 bit keys together with the address of the radio

frame. In this case the MBus class searches for the radio
frame address in the key database. If there is an entry with
the radio frame address the respective key is used to
decipher the radio frame. Multiple entries with the same
radio frame address are possible.
A maximum of 933 keys of KeyType=3 can be stored.

KeyType 2 AES 128 bit keys together with a manufacturer

code. In this case MBus class searches for the
manufacturer code of the radio frame in the key database.
If there is an entry with the manufacturer code the
respective key is used to decipher the radio frame.
Multiple entries with the same manufacturer code are
possible.
A maximum of 50 keys of KeyType=2 can be stored.

KeyType 1 General 64 bit keys. If the radio frame is ciphered using an
older ciphering scheme with 64 bit keys, the library tries all
64 bit keys one after another until the radio frame is
deciphered.
A maximum of 5 keys of KeyType=1 can be stored.

KeyType 0 General AES 128 bit keys. The library tries all AES 128 bit
keys one after another until the radio frame is deciphered.
A maximum of 10 keys of KeyType=0 can be stored.

 MBusRacXV2 Android 21

Since the radio frame deciphering is a time consuming process care must be taken
on how and how many radio keys should be configured in the library.

If you are using radio device specific keys (KeyType=3) you should e.g. configure the
radio keys project wise. That is only those radio device keys used for the current
reading tour are configured. For the next tour you reconfigure all radio keys.

If specific manufacturers use specific keys for all their radio devices it is advised to
configure manufacturer specific keys (KeyType=2).

If you are configuring general keys (KeyType=0) you should configure as few keys as
possible since the library is trying to decipher radio frames using one general key
after another until a radio frame was successfully deciphered or until there are no
more keys available. With many general keys, this process may consume a lot of
time (~ seconds per radio frame, depending on Android device).

The general sequence on how the library tries to find the correct key for a received
radio frame is shown in the next picture.

First the radio address specific radio keys are searched for a match, then the
manufacturer code specific radio keys are searched for a match and at last general
keys are tried one after another.

22 MBusRacXV2 Android

 MBusRacXV2 Android 23

void CryptoKeysWrite()

Writes the configured radio keys to the application specific storage space on the
Android device. In the constructor of the MBus class these storage space is read and
all keys imported to the library.
If you want to keep the configured radio key stored on the Android device you should
call this method after any modification on the radio keys.
If you do not want to store the configured radio keys on the Android device you
should not call this method.

int CryptoKeysGetKeyCount(int KeyType)

Returns the number of configured keys for the specified key type.

KeyType 0,1,2,3

String CryptoKeysGetKey(int KeyType, int KeyIndx)

Returns the configured key.

KeyType 0,1,2,3
KeyIndx 0 to (CryptoKeysGetKeyCount(int KeyType)-1)

boolean CryptoKeysDelete(int KeyType, int KeyIndx)

Deletes a configured key.

KeyType 0,1,2,3

KeyIndx 0 to (CryptoKeysGetKeyCount(int KeyType)-1)

24 MBusRacXV2 Android

boolean CryptoKeysAddOrModify(int KeyType, int KeyIndx, String KeyStr,
String Key2Str)

Adds or modifies an entry of the radio key database. If you want to add a key, set the
KeyIndx to -1. If you want to edit a key, set the KeyIndx to the KeyIndx to modify.

KeyType 0,1,2,3

KeyIndx -1 (add) or 0 to (CryptoKeysGetKeyCount(int KeyType)-1) (edit)

KeyStr the radio key (e.g. "000102030405060708090A0B0C0D0E0F“)

Key2Str depending on KeyType

 KeyType=0 "" (empty)

 KeyType=1 "" (empty)

 KeyType=2 3 characters manufacturer code, e.g. "XYZ"

 KeyType=3 8 characters address, e.g. "12345678"

 MBusRacXV2 Android 25

MBus class: properties

The following properties contain information about the interpreted radio frame. They
are only valid after having invoked the Interpret method and if the property IsValid is
true. Otherwise, these properties are containing arbitrary values.

String LibVersion

Contains the program version of the library, e.g. "1.00". This property is always valid
(independent from IsValid).

boolean IsValid

Contains true after having invoked Interpretation if the radio frame was successfully
interpreted, otherwise false. The properties of MBus class are only valid if IsValid is
true.

int RecSecond
int RecMinute
int RecHour
int RecDay
int RecMonth
int RecYear

Contain date and time of radio frame reception.

int LField

Contains the length field of the radio frame.

int CField

Contains the C-field of the radio frame.

26 MBusRacXV2 Android

String ManFieldLL
String ManFieldTPL

Contain the manufacturer field of the link layer, respectively transport layer of the
radio frame. If there is only a link layer manufacturer field, ManFieldTPL is set equal
to ManFieldLL. Usually, only ManFieldTPL is of interest.

String AdrFieldLL
String AdrFieldTPL

Contain the address field of the link layer, respectively transport layer of the radio
frame. If there is only a link layer address field, AdrFieldTPL is set equal to
AdrFieldLL. Usually, only AdrFieldTPL is of interest.

int VerFieldLL
int VerFieldTPL

Contain the version field of the link layer, respectively transport layer of the radio
frame. If there is only a link layer version field, VerFieldTPL is set equal to
VerFieldLL. Usually, only VerFieldTPL is of interest.

int DevFieldLL
int DevFieldTPL

Contain the device type field of the link layer, respectively transport layer of the radio
frame. If there is only a link layer device type field, DevFieldTPL is set equal to
DevFieldLL. Usually, only DevFieldTPL is of interest. For an interpretation of the
device type field please check EN13757-3.

int ELLType

Contains the type of the extended link layer.
0 no extended link layer
1 extended link layer with CI=0x8C
2 extended link layer with CI=0x8D
3 extended link layer with CI=0x8E
4 extended link layer with CI=0x8F

 MBusRacXV2 Android 27

int ELLCC

Contains the communication control field of the extended link layer as complete byte.
(only if ELLType = 1, 3).

int ELLCC_RepAccess

Contains the repeated access field of the communication control field of the extended
link layer (only if ELLType = 1, 3).

int ELLCC_Accessib

Contains the accessibility field of the communication control field of the extended link
layer (only if ELLType = 1, 3).

int ELLCC_Priority

Contains the priority field of the communication control field of the extended link layer
(only if ELLType = 1, 3).

int ELLCC_HopCtr

Contains the hop counter field of the communication control field of the extended link
layer (only if ELLType = 1, 3).

int ELLCC_Synchr

Contains the synchronous field of the communication control field of the extended
link layer (only if ELLType = 1, 3).

int ELLCC_Delay

Contains the delay field of the communication control field of the extended link layer
(only if ELLType = 1, 3).

28 MBusRacXV2 Android

int ELLCC_BiDi

Contains the bidirectional communication field of the communication control field of
the extended link layer (only if ELLType = 1, 3).

int ELLACC

Contains the access number field of the extended link layer as complete byte (only
if ELLType = 1, 3).

int ELLSN

Contains the session number field of the extended link layer as complete integer
(only if ELLType = 2, 4).

int ELLSN_Enc

Contains the encryption field of the session number field of the extended link layer
(only if ELLType = 2, 4).

int ELLSN_Time

Contains the time field of the session number field of the extended link layer (only
if ELLType = 2, 4).

int ELLSN_Session

Contains the session field of the session number field of the extended link layer (only
if ELLType = 2, 4).

int ELLSN_CRC

Contains the CRC field of the extended link layer (only if ELLType = 2, 4).

 MBusRacXV2 Android 29

String ELLMan

Contains the manufacturer field of the extended link layer (only if ELLType = 3, 4).

String ELLAdr

Contains the address field of the extended link layer (only if ELLType = 3, 4).

int ELLVer

Contains the version field of the extended link layer (only if ELLType = 3, 4).

int ELLDev

Contains the device type field of the extended link layer (only if ELLType = 3, 4). For
an interpretation of the device type field please check EN13757-3.

int AFLCI

Contains the CI field of the authentication and fragmentation layer. If this property
contains 0x90, there is an authentication and fragmentation layer, otherwise this
property contains 0x00 and there is no authentication and fragmentation layer.

int AFLLen

Contains the length field of the authentication and fragmentation layer (only if
AFLCI=0x90).

int AFLFCL

Contains the fragmentation control field of the authentication and fragmentation layer
as complete word (only if AFLCI=0x90).

int AFLFCL_FID

Contains the fragment ID field of the fragmentation control field of the authentication
and fragmentation layer (only if AFLCI=0x90).

30 MBusRacXV2 Android

int AFLFCL_KIP

Contains the key information present field of the fragmentation control field of the
authentication and fragmentation layer (only if AFLCI=0x90).

int AFLFCL_MACP

Contains the MAC present field of the fragmentation control field of the authentication
and fragmentation layer (only if AFLCI=0x90).

int AFLFCL_MCRP

Contains the message counter field present field of the fragmentation control field of
the authentication and fragmentation layer (only if AFLCI=0x90).

int AFLFCL_MLP

Contains the message length field present field of the fragmentation control field of
the authentication and fragmentation layer (only if AFLCI=0x90).

int AFLFCL_MCLP

Contains the message control field present field of the fragmentation control field of
the authentication and fragmentation layer (only if AFLCI=0x90).

int AFLFCL_MF

Contains the more fragments field of the fragmentation control field of the
authentication and fragmentation layer (only if AFLCI=0x90).

int AFLMCL

Contains the message control field of the authentication and fragmentation layer as
complete byte (only if AFLCI=0x90).

 MBusRacXV2 Android 31

int AFLMCL_AT

Contains the authentication type field of the message control field of the
authentication and fragmentation layer (only if AFLCI=0x90).

int AFLMCL_KIMP

Contains the key information field present field of the message control field of the
authentication and fragmentation layer (only if AFLCI=0x90).

int AFLMCL_MCMP

Contains the message counter field present field of the message control field of the
authentication and fragmentation layer (only if AFLCI=0x90).

int AFLMCL_MLMP

Contains the message length field present field of the message control field of the
authentication and fragmentation layer (only if AFLCI=0x90).

int AFLKI

Contains the key information field of the authentication and fragmentation layer as
complete byte (only if AFLCI=0x90).

int AFLKI_KID

Contains the key ID field of the key information field of the authentication and
fragmentation layer (only if AFLCI=0x90).

int AFLKI_KDFS

Contains the key derivation function field of the key information field of the
authentication and fragmentation layer (only if AFLCI=0x90).

32 MBusRacXV2 Android

int AFLKI_KVer

Contains the key version field of the key information field of the authentication and
fragmentation layer (only if AFLCI=0x90).

int AFLMCR

Contains the message counter field of the authentication and fragmentation layer as
complete integer (only if AFLCI=0x90).

byte AFLMAC[]

Contains the message authentication code of the authentication and fragmentation
layer (only if AFLCI=0x90). The number of bytes is given in AFLMACLen.

int AFLMACLen

Contains the number of bytes of the message authentication code of the
authentication and fragmentation layer (only if AFLCI=0x90).

int AFLML

Contains the message length field of the message authentication code of the
authentication and fragmentation layer as word (only if AFLCI=0x90).

int TPLCI

Contains the CI field of the transport layer.

int TPLAcc

Contains the access number field of the transport layer.

int TPLStatus

Contains the status field of the transport layer.

 MBusRacXV2 Android 33

int TPLConfig

Contains the configuration field of the transport layer as word.

int TPLConfig_Mode

Contains the mode field of the configuration field of the transport layer.

int TPLConfig_EncBytes

Contains the number of encrypted bytes of the radio frame from the configuration
field of the transport layer.

int TPLConfig_HopCtr

Contains the hop counter field of the configuration field of the transport layer.

int TPLConfig_RepAccess

Contains the repeated access field of the configuration field of the transport layer.

int TPLConfig_ContentMessage

Contains the content of message field of the configuration field of the transport layer.

int TPLConfig_ContentIndex

Contains the content index field of the configuration field of the transport layer.

int TPLConfig_Synchr

Contains the synchronous field of the configuration field of the transport layer.

34 MBusRacXV2 Android

int TPLConfig_Accessib

Contains the accessibility field of the configuration field of the transport layer.

int TPLConfig_BiDi

Contains the bidirectional communication field of the configuration field of the
transport layer.

int TPLConfig_CtrSize

Contains the counter size field of the configuration field of the transport layer.

int TPLConfigExt

Contains the configuration field extension of the transport layer as complete byte.

int TPLConfigExt_KID

Contains the key ID field of the configuration field extension of the transport layer.

int TPLConfigExt_KDFS

Contains the key derivation function field of the configuration field extension of the
transport layer.

int TPLConfigExt_Ver

Contains the version field of the configuration field extension of the transport layer.

int TPLConfigExt_PType

Contains the protocol type field of the configuration field extension of the transport
layer.

 MBusRacXV2 Android 35

int DRCount

Contains the number of data records within the radio frame.

String DRDIB[]

Array of strings containing the data information blocks of all data records in the radio
frame. The array index is between 0 and (DRCount-1).

int DRDIF_Dat[]

Array of integers containing the data field of the data information blocks of all data
records in the radio frame. The array index is between 0 and (DRCount-1).

int DRDIF_Func[]

Array of integers containing the function field of the data information blocks of all data
records in the radio frame. The array index is between 0 and (DRCount-1).

int DRDIF_Unit[]

Array of integers containing the unit field of the data information blocks of all data
records in the radio frame. The array index is between 0 and (DRCount-1).

int DRDIF_Tariff[]

Array of integers containing the tariff field of the data information blocks of all data
records in the radio frame. The array index is between 0 and (DRCount-1).

int DRDIF_Storage[]

Array of integers containing the storage field of the data information blocks of all data
records in the radio frame. The array index is between 0 and (DRCount-1).

36 MBusRacXV2 Android

String DRVIB[]

Array of strings containing the value information blocks of all data records in the radio
frame. The array index is between 0 and (DRCount-1).

String DRVIFTxt[]

Array of strings containing the physical units of all data records in the radio frame.
The array index is between 0 and (DRCount-1).

The physical units of the data records are recalculated to base units (e.g. volume is
always given as m3). The property DRValusStr[] containing the value of the data
record is automatically corrected to fit the physical unit.

int DRVIF[]

Array of integers containing the indexes of the text entries in the value information
field tables of EN13757-3 of all data records in the radio frame. The array index is
between 0 and (DRCount-1).

Depending on the value DRVIF the following tables must be used:

DRVIF = 0 … 127 EN 13757-3, primary VIF code table

DRVIF = 128 … 255 EN 13757-3, alternative VIF code table (VIF=0xFB)
 (DRVIF – 128)

DRVIF = 256 … 383 EN 13757-3, alternative VIF code table (VIF=0xFD)
 (DRVIF – 256)

DRVIF = 384 … 511 EN 13757-3, primary VIF code table with non metric

units
 (DRVIF – 384)

String DRValueStr[]

Array of strings containing the values of all data records in the radio frame. The array
index is between 0 and (DRCount-1).

 MBusRacXV2 Android 37

boolean CIPDeciphOK

This property contains true if the radio frame was successfully deciphered, false if it
was not deciphered.

byte Frame[]

This byte array contains the non-deciphered, original radio frame.

byte FrameDeCiphered[]

This byte array contains the deciphered radio frame.

38 MBusRacXV2 Android

Code Example

The following lines of pseudo-code show the principal usage of the MBusRacXV2
library. It should be noted that this is simplified and incomplete code just to show the
principles.
It is especially advised to invoke all Bluetooth communication methods
(BTConnect, BTCMDxxxxx) only in AsyncTasks to not block the Android main
UI task.

//**
// Initialization
//**

import com.michaelrac.mbusracxv2.MBWBLUE; // import class MBWBLUE
import com.michaelrac.mbusracxv2.MBus; // import class MBus

MBWBLUE MBL; // MBWBLUE class declaration -> MBL
MBus MBS; // MBus class declaration -> MBS
byte KeyFileKey[]; // KeyFileKey is used to hold the
 // ciphering key for storing the radio key
 // database on the Android device

MBL = new MBWBLUE(""); // invoke MBWBLUE class (parameter must be “”)
if (!MBL.BTAdapterOK) {error handling} // if the bluetooth adapter of the Android device
 // is not available MBWBLUE cannot be used

KeyFileKey=new byte[16]; // define you own key for storing radio frame keys
KeyFileKey[0]=(byte)0x36;KeyFileKey[1]=(byte)0x98;KeyFileKey[2]=(byte)0xBF;
KeyFileKey[3]=(byte)0x98;KeyFileKey[4]=(byte)0xAC;KeyFileKey[5]=(byte)0xED;
KeyFileKey[6]=(byte)0x4E;KeyFileKey[7]=(byte)0xC3;KeyFileKey[8]=(byte)0xD9;
KeyFileKey[9]=(byte)0x72;KeyFileKey[10]=(byte)0x21;KeyFileKey[11]=(byte)0xAE;
KeyFileKey[12]=(byte)0x6B;KeyFileKey[13]=(byte)0x80;KeyFileKey[14]=(byte)0xFA;
KeyFileKey[15]=(byte)0x23;
 // invoke MBus class with MainActivity context and
 // ciphering key for key data base
MBS = new MBus(getApplicationContext(),KeyFileKey);

//**
// Configure radio frame deciphering keys
//**

 // Configure AES 128 bit general keys
MBS.CryptoKeysAddOrModify(0, -1, "000102030405060708090A0B0C0D0E0F", "");
MBS.CryptoKeysAddOrModify(0, -1, "0F0E0D0C0B0A09080706050403020100", "");

 // Configure AES 128 bit address specific keys
MBS.CryptoKeysAddOrModify(3, -1, "00000000000000000000000000000000", "12345678");
MBS.CryptoKeysAddOrModify(3, -1, "11111111111111111111111111111111", "87654321");

MBS.CryptoKeysWrite(); // Write key database to application storage space

// on Android device.
 // In this case the configured keys are

// automatically loaded on invoking the MBus
// class.
// However, it is also possible to not save the
// radio keys and configure them every time the
// library is started.

 MBusRacXV2 Android 39

//**
// Get available, paired MBWBLUE devices
//**

MBL.AvailableDevicesList(); // Retrieve list of available, paired MBWBLUE
 // If no paired MBWBLUE -> error
if (MBL.AvailableDevicesCount()<=0) {error handling}

 // Put available, paired MBWBLUE into a list for
 // user selection
for (DSCounter=0; DSCounter<MBL.AvailableDevicesCount(); ++DSCounter)
{

List[DSCounter]=MBL.AvailableDevicesName(DSCounter);
}

//**
// Read out selected MBWBLUE to get general information (firmware version etc.)
//**

MBL.BTDeviceName=List[0]; // Set MBWBLUE name to first entry of List
 // Establish Bluetooth connection to MBWBLUE
if (MBL.BTConnect(MBL.AvailableDevicesGetAddressFromName(MBL.BTDeviceName)))
{ // If successful request firmware version

if (MBL.BTCMDRequestFirmwareVersionLeg())
{ // If successful request serial number
 if (MBL.BTCMDReadROMLeg())

{
X1=MBL.BTDevType; // These four properties are now set correctly
X2=MBL.BTFWVersion; // and can be e.g. displayed to the user
X3=MBL.BTSerialNumber;
X4=MBL.BTMACAddress;

}
}

 MBL.BTDisConnect(); // Shutdown Bluetooth connection to MBWBLUE
}

40 MBusRacXV2 Android

//**
// Reading radio frames
//**

if (MBL.BTConnect(MBL.AvailableDevicesGetAddressFromName(MBL.BTDeviceName)))
{

MBL.BTCurReceiveMode=0; // Set MBWBLUE receive mode to mode T + C
MBL.BTCurReceiverFreq=868; // Set MBWBLUE receive frequency to 868

 // Configure MBWBLUE receiver
if (!MBL.BTCMDReceiverModeLeg()) {error handling}

 while (!ReadingEnd)

{ // Generation 1,2 and generation 3
if (MBL.BTGen3==1) // devices have different reading commands
{ // Get next received radio frame

if (!MBL.BTCMDReadRadio()) {error handling}
else
{ // Interpret radio frame

if (MBS.Interpret(MBL.BTInBuffer,5,256,false))
{ // Use properties of MBus class
 Y1=MBS.AdrFieldTPL;
 Y2=MBS.ManFieldTPL;

Y3=MBS.VerFieldTPL;
Y4=MBS.DevFieldTPL;
for (Counter=0;Counter<MBS.DRCount;++Counter)
{
 Y5[Counter]=MBS.DRValueStr[Counter];

Y6[Counter]=MBS.DRVIFTxt[Counter];
}

}
}

}
else // Generation 2 devices
{ // Get next received radio frame

if (!MBL.BTCMDReadRadioLeg()) {error handling}
else
{ // Interpret radio frame

if (MBS.Interpret(MBL.BTInBuffer,12,241,false))
{ // Use properties of MBus class

Y1=MBS.AdrFieldTPL;
 Y2=MBS.ManFieldTPL;

Y3=MBS.VerFieldTPL;
Y4=MBS.DevFieldTPL;
for (Counter=0;Counter<MBS.DRCount;++Counter)
{
 Y5[Counter]=MBS.DRValueStr[Counter];

Y6[Counter]=MBS.DRVIFTxt[Counter];
}

}
}

}
}

 MBL.BTDisConnect(); // Shutdown Bluetooth connection to MBWBLUE
}

//**
// Clean up MBWBLUE and MBus classes after usage
//**

MBL.Destroy();
MBS.Destroy();

 MBusRacXV2 Android 41

MBWBLUE_DEMO application

MBWBLUE_DEMO is a small and simple Android application to demonstrate the
usage of the mbusracxv2.aar library. It is provided “as is” and it is not intended to be
used in productive environments.
The MBusRacXV2 library package contains the source code of the
MBWBLUE_DEMO application as ZIP file as well as the compiled APK file.
For general information on how integrating Android Archives in you project please
check the respective internet pages.

Installing and Starting

Copy the file MBWBLUE_DEMO.apk to your Android device using a network or USB
connection. Use a file explorer on your Android device to install and start the
application.

Before using the application with your MBWBLUE device, it is necessary to perform a
Bluetooth pairing using the Android operating system.

The started MBWBLUE_DEMO.apk looks like the screenshot below:

42 MBusRacXV2 Android

Usage

There are four user buttons:

 Updates the drop-down list with the already
paired MBWBLUE devices. If the drop-down list contains no
MBWBLUE please perform a Bluetooth pairing.

 Reads out the general parameter of the selected MBWBLUE
device, may also be used to test the connection.

 Additionally, if the MBWBLUE_DEMO application contains a
newer version of the MBWBLUE firmware the selected
MBWBLUE device is automatically updated.

 After a successful read, the parameters below are shown:

Device type: MBWBLUE type (868 or 434, V2 or V3)

Firmware version: Version of the firmware

Serial number: Serial number of the MBWBLUE

MAC address: Bluetooth MAC address of the MBWBLUE

 Opens a dialog to enter one radio frame deciphering key (32
characters). The 32 characters key (128 bit) is used as AES128
deciphering key; the first 16 characters (64 bit) are additionally
used as 64-bit key. Within the demo application, it is only
possible to enter one key even though the library is able to
handle multiple keys.

 MBusRacXV2 Android 43

 Starts the radio frame reading of the MBWBLUE in the selected mode.

Available modes are:

 Mode C + T / 868 MHz
 Mode S / 868 MHz
 Mode C + T / 434 MHz
 Mode S / 434 MHz

 Please note that it is possible for 868 MHz MBWBLUE devices to

receive at 434 MHz and vice versa. However, this is only for testing
purposes and the performance is very bad.

 All received radio frames are listed at the bottom of the application

window. The list is sorted by manufacturer codes first and radio
addresses afterwards. Only the latest received radio frame of each
device is shown in the list.

44 MBusRacXV2 Android

Additionally, statistical values of received radio frames are shown during
radio frame reading (only V3 MBWBLUE devices).

Frames: The overall number of correctly received radio frames
Devices: The number of different devices received
Mode T: The overall number of correctly received mode T frames
Mode C: The overall number of correctly received mode C frames
ER 3of6: Number of frames with 3 of 6 coding error received
ER CRC: Number of frames with CRC error received

	MBusRacXV2 for Android
	Introduction
	Items Supplied
	Acronyms and Abbreviations
	Available Classes
	MBWBLUE class: methods
	MBWBLUE(String DTypeName)
	void Destroy()
	void AvailableDevicesList()
	int AvailableDevicesCount()
	String AvailableDevicesName(int Indx)
	String AvailableDevicesAddress(int Indx)
	String AvailableDevicesGetAddressFromName(String BTName)
	boolean BTConnect (String MACAdr)
	void BTDisConnect ()
	boolean BTIsConnected()
	boolean BTCMDRequestFirmwareVersionLeg()
	boolean BTCMDReadROMLeg()
	boolean BTCMDReceiverModeLeg()
	boolean BTCMDClearRadioFrameBuffer()
	boolean BTCMDReadRadioLeg()
	boolean BTCMDReadRadio()
	boolean BTCMDSwitchOff()
	boolean BTCMDMBWBLUEFirmwareUpdate()

	MBWBLUE class: properties
	boolean BTAdapterOK
	String BTUpdateFWVersion
	byte BTOutBuffer[]
	int BTOutBufferLen
	byte BTInBuffer[]
	int BTInBufferLen
	int BTGen3
	int BTFreq
	int BTCurReceiveMode
	int BTCurReceiverFreq
	int BTTelgRSSI
	int BTStatisticsGoodFrameTS
	int BTStatisticsGoodFrameCA
	int BTStatisticsGoodFrameCB
	int BTStatisticsError36
	int BTStatisticsErrorCRC
	String BTFWVersion
	String BTDevType
	String BTSerialNumber
	int BTProgress

	MBus class: methods
	MBus (Context MAContext, byte KFKey[])
	boolean Interpret(byte BIn[], int BInStart, int BInLen, boolean DoNotDecipher)

	MBus class: crypto methods
	void CryptoKeysWrite()
	int CryptoKeysGetKeyCount(int KeyType)
	String CryptoKeysGetKey(int KeyType, int KeyIndx)
	boolean CryptoKeysDelete(int KeyType, int KeyIndx)
	boolean CryptoKeysAddOrModify(int KeyType, int KeyIndx, String KeyStr, String Key2Str)

	MBus class: properties
	String LibVersion
	boolean IsValid
	int RecSecond
	int RecMinute
	int RecHour
	int RecDay
	int RecMonth
	int RecYear
	int LField
	int CField
	String ManFieldLL
	String ManFieldTPL
	String AdrFieldLL
	String AdrFieldTPL
	int VerFieldLL
	int VerFieldTPL
	int DevFieldLL
	int DevFieldTPL
	int ELLCC
	int ELLCC_RepAccess
	int ELLCC_Accessib
	int ELLCC_Priority
	int ELLCC_HopCtr
	int ELLCC_Synchr
	int ELLCC_Delay
	int ELLCC_BiDi
	int ELLACC
	int ELLSN
	int ELLSN_Enc
	int ELLSN_Time
	int ELLSN_Session
	int ELLSN_CRC
	String ELLMan
	String ELLAdr
	int ELLVer
	int ELLDev
	int AFLCI
	int AFLLen
	int AFLFCL
	int AFLFCL_FID
	int AFLFCL_KIP
	int AFLFCL_MACP
	int AFLFCL_MCRP
	int AFLFCL_MLP
	int AFLFCL_MCLP
	int AFLFCL_MF
	int AFLMCL
	int AFLMCL_AT
	int AFLMCL_KIMP
	int AFLMCL_MCMP
	int AFLMCL_MLMP
	int AFLKI
	int AFLKI_KID
	int AFLKI_KDFS
	int AFLKI_KVer
	int AFLMCR
	byte AFLMAC[]
	int AFLMACLen
	int AFLML
	int TPLCI
	int TPLAcc
	int TPLStatus
	int TPLConfig
	int TPLConfig_Mode
	int TPLConfig_EncBytes
	int TPLConfig_HopCtr
	int TPLConfig_RepAccess
	int TPLConfig_ContentMessage
	int TPLConfig_ContentIndex
	int TPLConfig_Synchr
	int TPLConfig_Accessib
	int TPLConfig_BiDi
	int TPLConfig_CtrSize
	int TPLConfigExt
	int TPLConfigExt_KID
	int TPLConfigExt_KDFS
	int TPLConfigExt_Ver
	int TPLConfigExt_PType
	int DRCount
	String DRDIB[]
	int DRDIF_Dat[]
	int DRDIF_Func[]
	int DRDIF_Unit[]
	int DRDIF_Tariff[]
	int DRDIF_Storage[]
	String DRVIB[]
	String DRVIFTxt[]
	int DRVIF[]
	String DRValueStr[]
	boolean CIPDeciphOK
	byte Frame[]
	byte FrameDeCiphered[]

	Code Example
	MBWBLUE_DEMO application
	Installing and Starting
	Usage

